Beyond Amls: Domain Decomposition with Rational Filtering∗

نویسنده

  • VASSILIS KALANTZIS
چکیده

This paper proposes a rational filtering domain decomposition technique for the solution of large and sparse symmetric generalized eigenvalue problems. The proposed technique is purely algebraic and decomposes the eigenvalue problem associated with each subdomain into two disjoint subproblems. The first subproblem is associated with the interface variables and accounts for the interaction among neighboring subdomains. To compute the solution of the original eigenvalue problem at the interface variables we leverage ideas from contour integral eigenvalue solvers. The second subproblem is associated with the interior variables in each subdomain and can be solved in parallel among the different subdomains using real arithmetic only. Compared to rational filtering projection methods applied to the original matrix pencil, the proposed technique integrates only a part of the matrix resolvent while it applies any orthogonalization necessary to vectors whose length is equal to the number of interface variables. In addition, no estimation of the number of eigenvalues lying inside the interval of interest is needed. Numerical experiments performed in distributed memory architectures illustrate the competitiveness of the proposed technique against rational filtering Krylov approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving an elliptic PDE eigenvalue problem via automated multi-level substructuring and hierarchical matrices

We propose a new method for the solution of discretised elliptic PDE eigen-value problems. The new method combines ideas of domain decomposition, as in the automated multi-level substructuring (short AMLS), with the concept of hierarchical matrices (short H-matrices) in order to obtain a solver that scales almost linearly (linear up to logarithmic factors) in the size of the discrete space. Whe...

متن کامل

An Automated Multilevel Substructuring Method for Eigenspace Computation in Linear Elastodynamics

Abstract. We present an automated multilevel substructuring (AMLS) method for eigenvalue computations in linear elastodynamics in a variational and algebraic setting. AMLS first recursively partitions the domain of the PDE into a hierarchy of subdomains. Then AMLS recursively generates a subspace for approximating the eigenvectors associated with the smallest eigenvalues by computing partial ei...

متن کامل

Computation of Smallest Eigenvalues using Spectral Schur Complements

The Automated Multilevel Substructing method (AMLS ) was recently presented as an alternative to well-established methods for computing eigenvalues of large matrices in the context of structural engineering. This technique is based on exploiting a high level of dimensional reduction via domain decomposition and projection methods. This paper takes a purely algebraic look at the method and expla...

متن کامل

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

An A Priori Bound for Automated Multilevel Substructuring

Abstract. The Automated Multi-Level Substructuring (AMLS) method has been developed to reduce the computational demands of frequency response analysis and has recently been proposed as an alternative to iterative projection methods like Lanczos or Jacobi–Davidson for computing a large number of eigenvalues for matrices of very large dimension. Based on Schur complements and modal approximations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017